
This document is strictly confidential and is subject
to a non-disclosure agreement.

API Slotegrator

Overview

This document describes an API based on HTTP/1.1 protocol .RFC 2616

Document version 1.2.0

Links - RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1
, Currency codes- ISO 4217
, Languages codes- ISO 639-1

, Date and time format- ISO 8601

Changelog

Version (date) Change description

1.0.0 (2016-09-01, d6) Documentation initialized

1.0.1 (2016-09-07, d2) Games/init POST request format specified

1.0.2 (2016-09-15, d2) Limits and self-validate endpoints added

1.0.3 (2016-09-23, d2) Specify response status on duplicate requests

1.0.4 (2016-10-20, d2) "is_mobile" parameter added to games

1.0.5 (2016-11-15, d2) Demo mode

1.0.6 (2017-02-17, d2) Updated "/limits" response

1.0.7 (2017-03-21, d2) Added "/jackpots" endpoint

1.0.8 (2017-03-30, d2) Added "game_uuid" and "player_id" to "bet", "win" and "refund" requests

1.1.0 (2018-02-22, d2) Added freespins

1.1.1 (2019-07-04, d2) Added balance notifications

1.1.2 (2020-08-25, d2) Parameter "is_finished" changed to "finished".

1.1.3 (2020-10-06, d2) Rollback. Parameter `round_id` is fixed.

1.1.4 (2020-11-25, d2) FreeSpins. Property added.`total_bets`

1.2.0 (2022-10-21) Updated "/games"

Added `expand` request parameter and available expansions list.
Added optional win parameters "bonus", "pragmatic_prize_drop" and "pragmatic_tournament"
Added optional refund parameters "bet", "tip" and "freespin"

Game Aggregator

Overview

Integration data provided by Game Aggregator

1. Merchant ID
Merchant Key2.
Base API URL3.

Endpoints and Base API URL

For example, is https://example.com/api/v1 and is /games/lobbyBase API URL * * Endpoint * *

Then calls from integrator to Game Aggregator should be done to https://example.com/api/v1/games/lobby* *

Request format

Query parameters should be passed with content type.`application/x-www-form-urlencoded`

https://www.ietf.org/rfc/rfc2616
https://tools.ietf.org/html/rfc2616
http://www.iso.org/iso/home/standards/currency_codes.htm
https://www.iso.org/iso-639-language-codes.html
http://www.iso.org/iso/home/standards/iso8601.htm

Response format

Default response format is with header.`json` `Content-Type: application/json`

List of used HTTP codes

Code Interpretation

200 OK. Everything worked as expected.

201 A resource was successfully created in response to a request. The header`POST` `Location`
contains the URL pointing to the newly created resource.

204 The request was handled successfully and the response contains no body content (like a request).`DELETE`

304 The resource was not modified. You can use the cached version.

400 Bad request. This could be caused by various actions by the user, such as providing invalid JSON
data in the request body, providing invalid action parameters, etc.

401 Authentication failed.

403 The authenticated user is not allowed to access the specified API endpoint.

404 The requested resource does not exist.

405 Method not allowed. Please check the header for the allowed HTTP methods.`Allow`

415 Unsupported media type. The requested content type or version number is invalid.

422 Data validation failed (in response to a request, for example). Please check the response body for detailed error `POST`
messages.

429 Too many requests. The request was rejected due to rate limiting.

430 Internal server error. This could be caused by internal program errors.

Error response
Generic errors
Generic error response contains a single object with following attributes:

Attribute: data type Description

`name`, `string` Exception name

`message`, `string` Exception message

`code`, `integer`, `default: 0` Exception code

`status`, `integer` HTTP status code

Example

Response

HTTP/1.1 404 Not Found

{
"name": "Not Found Exception",
"message": "The requested resource was not found.",
"code": 0,
"status": 404
}

Collections

Collection is a set of objects of the same type. There is an additional metadata for working with collections like pagination or sorting.

Pagination headers

By default, pagination metadata is available via HTTP headers:

Attribute Description

`X-Pagination-Total-Count` The total number of resources

`X-Pagination-Page-Count` The number of pages

`X-Pagination-Current-Page` The current page (1-based)

`X-Pagination-Per-Page` The number of resources in each page

`Link` A set of navigational links allowing client to traverse the resources page by page

Collections enveloping

In case your client is incapable of working with HTTP headers you are able to receive this information within response body.

Response

HTTP/1.1 200 OK
...

X-Pagination-Total-Count: 1000

X-Pagination-Page-Count: 50

X-Pagination-Current-Page: 1

X-Pagination-Per-Page: 20

Link: < >; rel=self, < >; rel=next, <https://example.com/endpoint?page=1 https://example.com/endpoint?page=2 https://example.com
>; rel=last Content-Type: application/json; charset=UTF-8/endpoint?page=50

{

"items": [

{

"id": 1,

...

},

{ "id": 2,

...

},

...

],

"_links": {

"self": {

"href": " "https://example.com/endpoint?page=1

},

"next": {

"href": " "https://example.com/endpoint?page=2

},

"last": {

"href": " " }https://example.com/endpoint?page=50

},

"_meta": {

"totalCount": 1000, "pageCount": 50, "currentPage": 1, "perPage": 20

}

}

Game launch flow

Games should be stored/cached on the client side after retrieval. Game could be launched in several steps according to scenario based
on lobby availability.

Games without lobby:

1. Call `/games/init`
Launch game by redirecting player to the provided URL2.

Games with lobby:

1. Call `/games/lobby`
Call with provided 2. `/games/init` `lobby_data`
Launch game by redirecting player to the provided URL3.

> Info: More info on `/games`, `/games/lobby` and `/games/init` endpoints could be found in corresponding documentation sections.
> Note: Base API URL should be provided by manager.

Security

All requests should contain authorization headers (except Launch phase with player redirection).** **

Authorization headers

Attribute Description

`X-Merchant-Id` Merchant ID provided by integration manager

`X-Timestamp` Request timestamp. If differ from current timestamp for more than 30 seconds - request considered expired

`X-Nonce` Random string

`X-Sign` Sign calculated with sha1 hmac

X-Sign calculation

1. Merge request array with authorization headers array
Sort resulting array by key in ascending order2.
Generate a URL-encoded query string from this array3.
Use sha1 hmac algorithm with Merchant Key (provided by integration manager) for signing4.

PHP example of the X-Sign calculation

```php
$merchantKey = 'Merchant Key provided by integration manager';

$headers = [
'X-Merchant-Id' => 'value',
'X-Timestamp' => time(),
'X-Nonce' => md5(uniqid(mt_rand(), true)),
];

$requestParams = [
'game_uuid' => 'abcd12345',
'currency' => 'USD',
];

$mergedParams = array_merge($requestParams, $headers);
ksort($mergedParams);
$hashString = http_build_query($mergedParams);

$XSign = hash_hmac('sha1', $hashString, $merchantKey);

Example

Request

GET /games

X-Merchant-Id: ff955b5759b3885f08cf125d4454ceb4
X-Timestamp: 1471857411
X-Nonce: e115cf0f66a645aca08225c9c1b20b80
X-Sign: 1bb7e4cd5c43f9885ba6a1758ad30fc562f88821

Games



Endpoint URL

/games

`[ GET / ]` Retrieving games list

You will receive games collection available for your Merchant ID.

The production server only returns 50 games per page. Per page = 0 doesn't work there.

Request fields

Attribute: data type Description

`expand`: `string`, `optional` Request additional object expansions, separated by comma

Game item fields

Attribute: data type Description

`uuid`: `string` Game UUID that will be used in `/init` and `/lobby`

`name`: `string` Game name

`image`: `string` Game image url

`type`: `string` Game type

`provider`: `string` Game provider name

`technology`: `string` Game technology

`has_lobby`: `integer` 1 or 0 - indicates if game has lobby

`is_mobile`: `integer` 1 or 0 - indicates if game used for mobile devices and should be opened in new window (not in iframe or 
some <div> container)

` `: has_freespins
`integer`

1 or 0 - indicates if game has freespins

` `: `integer`has_tables 1 or 0 - indicates if game has game tables

`freespin_valid_until_fu
ll_day`: `integer`

1 or 0 - indicates that `freespins/set` property `valid_until` must have time 00:00:00. Example pass valid_unit = 
2020-01-25 freespin campaign will be valid until 2020-01-26 00:00:00

Available expansions

Attribute: data type Description

`tags`: `object[]` assigned tags objects

`parameters`: `object` additional game parameters

`images`: `object[]` game images objects, including high-quality if available

Example

Request

GET /games?expand=images,tags HTTP/1.1

Lobby

If game has lobby integrator should call this action to get lobby tables, so player can choose which table to play.



Endpoint URL

/games/lobby

`[ GET / ]` Returns list of tables for the selected game

Request fields

Attribute: data type Description

`game_uuid`: `string`, `required` Game UUID provided in `/games`

`currency`: `string`, `required` Player currency that will be used in this game session

`technology`: `string`, `optional` Parameter for lobby tables filtering by technology

Can be two types: "html5" or "flash".

Response fields

,`lobby`: `array` Contains lobby data of the selected game with following attributes:

Attribute: data type Description

`lobbyData`: `string` Data required on `/games/init` phase for *lobby_data* parameter

`name`: `string` Table name

`isOpen`: `boolean` True or false - indicates if game is open right now

`openTime`: `string` Lobby open time

`closeTime`: `string` Lobby close time

`dealerName`: `string` Dealer name

`dealerAvatar`: `string` Dealer avatar url

`technology`: `string` Lobby technology ("html5" or "flash")

`limits`: `array` Table limits

Example

Request

GET /games/lobby?game_uuid=abc123&currency=USD HTTP/1.1



Response

HTTP/1.1 200 OK
...
{
lobby: {
lobbyData: "abcd12345",
name: "Baccarat",
isOpen: true,
openTime: "11:00:00",
closeTime: "12:00:00",
dealerName: "abcd12345",
dealerAvatar: " ",https://avatar-url.com
technology: "html5",
limits: {
{
currency:"USD",
min: 1,
max: 100
}
}
}
}

Init
This action will prepare game for launch and return final url where player should be redirected to start playing.

Endpoint URL

Endpoint URL

/games/init

`[ POST / ]` Initializing game session

Request fields

Attribute: data type Description

`game_uuid`: `string`, `required` Game UUID provided in `/games`

`player_id`: `string`, `required` Unique player ID on the integrator side

`player_name`: `string`, `required` Player nickname that will be shown in some games

`currency`: `string`, `required` Player currency that will be used in this game session

`session_id`: `string`, `required` Unique game session ID on the integrator side

`return_url`: `string`, `optional` Redirect player to this url after game ends

`language`: `string`, `optional` Player language

`email`: `string`, `optional` Player email

`lobby_data`: `string`, `optional` Used only for games with lobby. Provided in `/lobby`

Example

Request

POST /games/init HTTP/1.1

game_uuid=abcd12345&player_id=abcd12345&player_name=abcd12345&currency=USD& ....



Response

HTTP/1.1 200 OK

{
"url": " "https:// /endpointexample.com
}

Init demo game (only if provider has demo mode)

This action will prepare game for launch in demo mode and return final url where player should be redirected to start playing.

Endpoint URL

/games/init-demo

`[ POST / ]` Initializing game session

Request fields

Attribute: data type Description

`game_uuid`: `string`, `required` Game UUID provided in `/games`

`return_url`: `string`, `optional` Redirect player to this url after game ends

`language`: `string`, `optional` Player language

Example

Request

POST /games/init-demo HTTP/1.1
...

game_uuid=abcd12345&language=en&return_url=....

Response

HTTP/1.1 200 OK
{
"url": " "https:// /endpointexample.com
}

Game launch

To launch the game redirect player to the URL returned by or .`/games/init` `/games/init-demo`

Integrator

Overview

Integrator should provide endpoint URL to communicate with Game Aggregator during the game session

Game Aggregator could send 4 type of calls to integrator

Balance-
Win-
Bet-
Refund-

Request format

http://example.com
http://example.com


All calls from Game Aggregator to integrator will be done via and parameters will be passed with `POST` `application/x-www-form-
content typeurlencoded` 

Response format

All integrator responses should have header, format and status code.`Content-Type: application/json` `json` `HTTP/1.1 200 OK` 

Error format

In case of error integrator should return json object with following attributes and status code.`HTTP/1.1 200 OK` 

Attribute: data type Description

`error_code`: `string`, `required` Error code (specific for every action)

`error_description`: `string`, `required` Human readable error description. Can be empty

Response

HTTP/1.1 200 OK
{
"error_code": "INSUFFICIENT_FUNDS",
"error_description": "Not enough money to continue playing"
}

Error codes

Error code Description

`INSUFFICIENT_FUN
DS`

code used in bet action when player has insufficient funds** ** 

`INTERNAL_ERROR` code used in all other cases meaning that action has not been executed: player not found, database or file 
system errors, etc

Security

All Game Aggregator requests contains authorization headers.

Authorization headers

Header name Description

`X-Merchant-Id` Merchant ID provided by integration manager

`X-Timestamp` Request timestamp. If differ from current timestamp for more than 30 seconds - request considered expired

`X-Nonce` Random string

`X-Sign` Sign calculated with sha1 hmac

X-Sign calculation

1. Merge request array with authorization headers array
Sort resulting array by key in ascending order2.
Generate a URL-encoded query string from this array3.
Use sha1 hmac algorithm with Merchant Key (provided by integration manager) for signing4.

PHP example of the X-Sign validation



```php
$merchantKey = 'Merchant Key provided by integration manager';

$headers = [
'X-Merchant-Id' => 'Get header value',
'X-Timestamp' => 'Get header value',
'X-Nonce' => 'Get header value',
];

$XSign = 'Get header value';

$mergedParams = array_merge($_POST, $headers);
ksort($mergedParams);
$hashString = http_build_query($mergedParams);

$expectedSign = hash_hmac('sha1', $hashString, $merchantKey);

if ($XSign !== $expectedSign) {
throw new \Exception('Invalid sign');
}

Example

Request

POST <client_callback_endpoint> HTTP/1.1
Content-Type: application/x-www-form-urlencoded
...
X-Merchant-Id: ff955b5759b3885f08cf125d4454ceb4
X-Timestamp: 1471857411
X-Nonce: e115cf0f66a645aca08225c9c1b20b80
X-Sign: 1bb7e4cd5c43f9885ba6a1758ad30fc562f88821

param=value¶m2=value2
...

Balance

Game Aggregator will call this action to retrieve actual player balance

Endpoint URL

<client_callback_endpoint>

Request

`[POST /]` Balance request

Request fields

Attribute: data type Description

`action`: `string ["balance"]` Action "balance"

`player_id`: `string` Unique player ID on integrator side

`currency`: `string` Balance currency

`session_id`: `string` Session ID (if option enabled)

Response fields

Attribute: data type Description

`balance`: `double`, `required` Player's balance

Example

Request

POST <client_callback_endpoint> HTTP/1.1
...

action=balance&player_id=123456¤cy=USD&session_id=c4ca4238a0b923820dcc509a6f75849b

Response

HTTP/1.1 200 OK
...
{
"balance": 57.12
}

Bet

This action is called when player trying to make a bet.

Bet types

Type Description

`bet` Default bet type

`tip` Tip for a dealer

`freespin` Freespin

Request fields

Attribute: data type Description

`action`: `string ["bet"]` Action "bet"

`amount`: `double` Bet amount

`currency`: `string` Bet currency

`game_uuid`: `string` Game UUID from the list of games `/games`

`player_id`: `string` Unique player ID on integrator side

`transaction_id`: `string` Unique transaction ID on Game Aggregator side

`session_id`: `string` Unique integrator game session ID, provided in `/games/init`

`type`: `string` "bet", "tip" or "freespin"

`freespin_id`: `string` Unique campaing identifier provided in /freespins/set (present in case of active freespin campaign)

`quantity`: `int` Number of freespin rounds left in campaing (present in case of active freespin campaign)

`round_id`: `string`, `optional` id of current transaction round

`finished`: `boolean`, `optional` is round is finished in game

Response fields

Attribute: data type Description

`balance`: `double`, `required` Player's balance after transaction

`transaction_id`: `string`, `required` Unique transaction ID on the integrator side

Important!

Bet with provided **transaction_id** should be processed only once. If you already processedthis transaction, then return successful
response with processed transaction ID on the integrator side.

Example

Request

POST <client_callback_endpoint> HTTP/1.1
...
action=bet&amount=10.00¤cy=USD&transaction_id=abcd12345&session_id=abcd12345&type=bet

Response

HTTP/1.1 200 OK
...

{
"balance": 27.18,
"transaction_id": "abcd12345",
}

Win

Action called when player win in a game

Win types

Type Description

`win` Default win type

`jackpot` Player get a jackpot

`freespin` Freespin

Request fields

Attribute: data type Description

`action`: `string ["win"]` Action "win"

`amount`: `double` Win amount

`currency`: `string` Win currency

`game_uuid`: `string` Game UUID from the list of games `/games`

`player_id`: `string` Unique player ID on integrator side

`transaction_id`: `string` Unique transaction ID on Game Aggregator side

`session_id`: `string` Unique integrator game session ID, provided in `/games/init`

`type`: `string` "win", "jackpot" or "freespin". For some Pragmatic provider games also can be "bonus",
"pragmatic_prize_drop" or "pragmatic_tournament"

`freespin_id`: `string` Unique campaing identifier provided in /freespins/set (present in case of active freespin campaign)

`quantity`: `int` Number of freespin rounds left in campaing (present in case of active freespin campaign)

`round_id`: `string`,
`optional`

id of current transaction round

`finished`: `boolean`,
`optional`

is round is finished in game

Response fields

Type Description

`balance`: `double`, `required` Player's balance after transaction

`transaction_id`: `string`, `required` Unique transaction ID on the integrator side

Important!

Win with provided **transaction_id** should be processed only once. If you already processedthis transaction, then return successful
response with processed transaction ID on the integrator side.

We don't provide **round_id** value for freespin wins of the ELK provider.

Example

Request

POST <client_callback_endpoint> HTTP/1.1
...
action=win&amount=100.00¤cy=USD&transaction_id=abcd12345&session_id=abcd12345&type=win

Response

HTTP/1.1 200 OK
...

{
"balance": 170.21,
"transaction_id": "abcd12345",
}

Refund

Refund is a cash back in case bet problems.

After receiving `refund` call integrator should cancel corresponding bet transaction and return funds to player.
If such bet transaction does not exists then integrator should just save this refund transaction and respond with success.

Request fields

Attribute: data type Description

`action`: `string ["refund"]` Action "refund"

`amount`: `double` Refund amount

`currency`: `string` Refund currency

`game_uuid`: `string` Game UUID from the list of games `/games`

`player_id`: `string` Unique player ID on integrator side

`transaction_id`: `string` Unique transaction ID on Game Aggregator side

`session_id`: `string` Unique integrator game session ID, provided in `/games/init`

`type`: `string`, `optional` Transaction type. Available values: `bet`, `tip`, `freespin`

`bet_transaction_id`: `string` Game Aggregator bet transaction ID to be refunded

`freespin_id`: `string` Unique campaing identifier provided in /freespins/set (present in case of active freespin campaign)

`quantity`: `int` Number of freespin rounds left in campaing (present in case of active freespin campaign)

`round_id`: `string`, `optional` ID of current transaction round

`finished`: `boolean`, `optional` is round is finished in game

Response fields

Attribute: data type Description

`balance`: `double`, `required` Player's balance after transaction

`transaction_id`: `string`, `required` Unique refund transaction ID on the integrator side

Important!

Bet with provided **bet_transaction_id** should be refunded processed only once. If you already refundedthis transaction, then in
response return processed refund transaction ID on the integrator side.

Request

POST <client_callback_endpoint> HTTP/1.1
...
action=refund&amount=10.
00¤cy=USD&transaction_id=abcd12345&session_id=abcd12345&bet_transaction_id=abcd1234&type=bet

Response

HTTP/1.1 200 OK

{
"balance": 27.18,
"transaction_id": "abcd12345",
}

Rollback

In case enabled providersonly for two

Rollback is a cancel of the whole round or part of the session if provider does not support rounds.

After receiving `rollback` call integrator should cancel corresponding bet, refund and win transactions and actualize player balance.
If such bet or win transaction does not exists then integrator should just save this transaction as `rollbacked` and respond with success.

The integrator should cancel transactions from .the `rollback_transactions` list only
Any additional logic based on `provider_round_id`, that will rollback other transactions in the same round, can produce a lot of errors
within out of sync session data between provider, game aggregator and integrator.

Request fields

Attribute: data type Description

`action`: `string ["rollback"]` Action "rollback"

`currency`: `string` Rollback currency

`game_uuid`: `string` Game UUID from the list of games `/games`

`player_id`: `string` Unique player ID on integrator side

`transaction_id`: `string` Unique transaction ID on Game Aggregator side

`rollback_transactions`: `array` List of round transactions

`action`: `string` `bet`, `win` or `refund`action

`amount`: `double` Transaction amount

`transaction_id`: `string` Unique transaction ID on Game Aggregator side for rollbacking transaction

`type`: `string` See types for `bet` or `win`

`session_id`: `string` Unique integrator game session ID, provided in `/games/init`

`type`: `string` "rollback"

`provider_round_id`: `string` Game Aggregator round id

`round_id`: `string` Game Aggregator round id

Response fields

Attribute: data type Description

`balance`: `double`, `required` Player's balance after transaction

`transaction_id`: `string`, `required` Unique rollback transaction ID on the integrator side

`rollback_transactions`: `array`, `required` All transactions id related to rollbacked round should be in array

If some transaction will be missed Game Aggregator will accept rollback response as failed.

Example

Request

POST <client_callback_endpoint> HTTP/1.1
...

action=rollback¤cy=EUR&game_uuid=12345&player_id=4&transaction_id=12345&rollback_transactions[0][action]
=bet&rollback_transactions[0][amount]=1.5&rollback_transactions[0][transaction_id]=12346&rollback_transactions[0][type]
=bet&rollback_transactions[1][action]=win&rollback_transactions[1][amount]=0&rollback_transactions[1][transaction_id]
=12347&rollback_transactions[1][type]=win&session_id=23456&type=rollback&provider_round_id=1

Response

HTTP/1.1 200 OK
...

{
"balance": 27.18,
"transaction_id": "12345",
"rollback_transactions" => {
12346,
12347
}
}

Additional requests to Game Aggregator

Merchant limits

Returns list of limits for merchant

All transactions specified in rollback request should be refunded processed only once. If you already processedsome
transaction, then transaction_id should be in response as successfully processed.

Endpoint URL

/limits

Request

`[GET /]` Returns list of limits for merchant

Response fields

Attribute:
data type

Description

`amount`:
`string`

Amount left

`currency`:
`string`

Limit currency

`provider`:
`array`

List of providers attached to this limit

Example

Response

GET /limits
...

Response

HTTP/1.1 200 OK
...

[
{
"amount": "1000.00",
"currency": "USD",
"providers":[
"Provider1",
"Provider2",
"Provider3"
]
},
{
"amount": "1000.00",
"currency": "EUR",
"providers":[
"Provider1"
]
}
]

Merchant freespin limits

Returns list of freespin limits for merchant.

Endpoint URL

Endpoint URL

/limits/freespin

Request

`[GET /]` Returns list of freespin limits for merchant

Response fields

Attribute: data type Description

`quantity`: `int` Quantity of freespin left

`currency`: `string` Freespin limit currency

`provider`: `array` List of providers attached to this freespin limit

Example

Request

GET /limits/freespin

...

Response

HTTP/1.1 200 OK
...

[
{
"quantity": 17,
"currency": "USD",
"providers":[
"Provider1",
"Provider2",
"Provider3"
]
},
{
"quantity": 1000,
"currency": "EUR",
"providers":[
"Provider1"
]
}
]

List of jackpots

Returns list of jackpots for every game provider (if available) assigned to merchant key.
List of jackpots is cached for 60 seconds.

Endpoint URL

/jackpots

Request

`[GET /]` Returns list of jackpots assigned to merchant key

Response fields

Attribute: data type Description

`name`: `string`, `null` Jackpot name (string or null if game provider does not have names for jackpots)

`amount`: `string` Amount left

`currency`: `string` Limit currency

`provider`: `string` Game provider

Example

Request

GET /jackpots
...

Response

HTTP/1.1 200 OK
...

[
{
"name": "jackpot name",
"amount": "1000.00",
"currency": "USD",
"provider": "Provider1"
},
{
"name": null,
"amount": "1000.00",
"currency": "EUR",
"provider": "Provider2"
}
]

Balance notification

Notify every game provider (if available) assigned to merchant key about balance changes.

Endpoint URL

/balance/notify

`[POST /]` Notify that player's balance was changed

Attribute: data type Description

`balance`: `double`, `required` Updated player balance

`session_id`: `string` Unique integrator game session ID, provided in `/games/init`

Example

Request

POST /balance/notify HTTP/1.1
...

balance=11.23&session_id=23456

Response

HTTP/1.1 200 OK
...

```

```
HTTP/1.1 500 Internal Server Error
...

{
"name": "Internal Server Error",
"message": "Session related to casino_session_uuid was not found",
"code": 0,
"status": 500
}

List of available freespin bets for chosen game and currency

Endpoint URL

/freespins/bets

`[GET /]` Get list of available freespin bets for chosen game and currency

Request fields

Attribute: data type Description

`game_uuid`: `string`, `required` Game UUID provided in `/games`

`currency`: `string`, `required` Player currency that will be used in freespin campaing

Response fields

Attribute: data type Description

`denominations`: `array` Available denominations

`bets`: `array` Available freespin bets, optional

`total_bets`: `array` Possible total bets values, optional

Bets description

field
name

type description

bet_id string id of bet in list

bet_per
_line

string
/float

if it is float it means bet amount for onr line. Or it is can be one of the next value: "max", "mid", "min". It is means
that final bet amount determined by provider

lines integer lines count of game

Total bets description

field name type description

bet_id integer id of bet in total_bets list

amount float free spin total bet amount per spin

Example

:Request

Request

GET /freespins/bets?game_uuid=abcd12345¤cy=USD HTTP/1.1

...

Response:

Response

HTTP/1.1 200 OK
...
{
"denominations":["0.01","0.1","1"],
"bets":[
{
"bet_id":"0",
"bet_per_line":1,
"lines":25
},
{
"bet_id":"1",
"bet_per_line":2,
"lines":25
},
...
],
"total_bets":[
 {
 "bet_id": 0,
 "amount": 10.0
 },
 {
 "bet_id": 1,
 "amount": 25.0
 },

]
}

Set a freespin campaign

Endpoint URL

/freespins/set

Request

`[POST /]` Set a freespin campaing for player

Request fields

Attribute: data type Description

`player_id`: `string`, `required` Unique player ID on the integrator side

`player_name`: `string`,
`required`

Player nickname that will be shown in some games

`currency`: `string`, `required` Player currency that will be used in this freespin campaing

`quantity`: `int`, `required` Number of freespin rounds in this campaing

`valid_from`: `int`, `required` Start date (Timestamp) of campaing

`valid_until`: `int`, `required` End date (Timestamp) of campaing. Also see description in method `/games`, property
`freespin_valid_until_full_day`

`freespin_id`: `string`,
`required`

Unique identifier of campaing

`bet_id`: `integer`, `optional` Bet ID provided in `/freespins/bets`

`total_bet_id`: `integer`,
`optional`

Total bet ID

`denomination`: `double`,
`optional`

Denomination provided in `/freespins/bets`, `required` if `bet_id` used

`game_uuid` : `string`,
`required`

Game UUID provided in `/games` that will be included in campaing

One of optional fields and ` or is required.`bet_id` denomination` `total_bet_id`

Example

Request

POST /freespins/set HTTP/1.1
...

player_id=abcd12345&player_name=abcd12345¤cy=USD&quantity=5&valid_from=1518610000&valid_until=1519610000&

Response

HTTP/1.1 200 OK

...

Get a freespin campaign

Endpoint URL

/freespins/get

Request

`[GET /]` Get list of set campaigns

Request fields

Attribute: data type Description

`freespin_id`: `string`, `required` Unique identifier of campaing

Response fields

Attribute: data type Description

`player_id`: `string` Unique player ID on the integrator side

`currency`: `string` Player currency that will be used in this freespin campaign

`quantity`: `int` Number of freespin rounds in this campaing

`quantity_left`: `int` Number of freespin rounds left in this campaing

`valid_from`: `int` Start date (Timestamp) of campaign

`valid_until`: `int` End date (Timestamp) of campaign

`freespin_id`: `string` Unique identifier of campaign

`bet_id`: `int` Bet ID provided in `/freespins/bets`

`total_bet_id`: `int` Total bet ID

`denomination`: `double` Denomination provided in `/freespins/bets`

`game_uuid`: `string` Game UUID provided in `/games`

`status`: `string` Status of campaign

`is_canceled`: `int` is campaign canceled

`total_win`: `double` Total win

Example

Request

GET /freespins/get?freespin_id=abcd12345
...

Response

HTTP/1.1 200 OK
...

{
"player_id": "abcd12345",
"currency": "USD",
"quantity": 10,
"quantity_left": 8,
"freespin_id": "abcd12345",
...
}

Cancel set camping

Endpoint URL

/freespins/cancel

`[POST /]` Cancel set camping for player

Request fields

Attribute: data type Description

`freespin_id`: `string`, `required` Unique identifier of campaing

Example

Request

POST /freespins/cancel HTTP/1.1
...

freespin_id=abcd12345

Response

HTTP/1.1 200 OK
...

Integrator self validation

Integrator could check if implementation on his side is correct. To start validation integrator should have
active game session (opened not longer than 15 minutes ago). Game Aggregator will send set of requests ('bet', 'win', etc)
during validation and return result in response.

Endpoint URL

/self-validate

`[POST /]` Self validation

Response fields

Attribute: data type Description

`success`: `boolean` true or false - indicates if validation is passed and implementation is correct

`log`: `array` Validation log

Example

Request

POST /self-validate

...

Response

HTTP/1.1 200 OK
...

{
"success": true,
"log": [
"Log message",
"Log message",
...
]
}

	API Slotegrator

